Potential of modal shift to rail transport

Huib van Essen (CE Delft)
Angelo Martino (TRT Trasporti e Territorio)
Outline

- Context
- Modal shares and relative emissions
- Methodology for estimating modal shift potential
- Capacity analysis
- Literature survey
- Case studies
- GHG reduction potential of modal shift to rail
- 2050 perspective
- Rebound effects
- Conclusions and recommendations
Context

- White Paper on Transport
- Roadmap 2050 for decarbonising transport
- Various policy areas:
 - Pricing policy (Eurovignet, Rail Infrastructure Charging, Energy Taxation)
 - Infrastructure policy (TEN-T, cohesion funds)
 - Regulation (CO₂ regulation, megatrucks, cabotage, speed, etc.)
 - Rail policy (interoperability, harmonisation, market structure)
Modal split of freight transport (EU-27)
Comparison of trend in the EU-15 and EU-12

% modal share of freight transported

Projected transport volumes per freight transport mode and market segment (billion tonne-km in 2020)

Sea shipping excluded
Modal split of passenger transport (EU-27)
Projected transport volumes per passenger transport mode and market segment (billion pass-km in 2020)
Comparison of emissions from single modes (estimates based on SULTAN tool)

Freight (g/tkm)

<table>
<thead>
<tr>
<th>Type of good</th>
<th>2020</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><500 km</td>
<td>>500 km</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>Road</td>
</tr>
<tr>
<td>Container</td>
<td>13</td>
<td>131</td>
</tr>
<tr>
<td>Bulk</td>
<td>12</td>
<td>84</td>
</tr>
<tr>
<td>Miscell. goods</td>
<td>13</td>
<td>141</td>
</tr>
</tbody>
</table>

Passenger (g/pkm)

<table>
<thead>
<tr>
<th>Transport mode</th>
<th>2020</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><100 km</td>
<td>100-500 km</td>
</tr>
<tr>
<td>Train</td>
<td>46</td>
<td>31</td>
</tr>
<tr>
<td>Car (private use)</td>
<td>88</td>
<td>80</td>
</tr>
<tr>
<td>Car (business use)</td>
<td>150</td>
<td>159</td>
</tr>
<tr>
<td>Aviation</td>
<td>231</td>
<td>237</td>
</tr>
</tbody>
</table>
Methodology

Three approaches for estimating modal shift potential:
• Infrastructure capacity analysis
• Assessment of existing studies on overall modal shift potential
• Analysis of illustrative case studies

Calculation of GHG impacts:
• Combining the results of the three approaches
• Using average GHG emissions per tkm per distance class
• For road freight only large trucks
• Transport to/from terminals and detour effects included
Infrastructure capacity analysis

Two different levels of analysis:

- **Geographical basis**: the EU-27, EU-15, EU-12, and Europe which adds to EU-27, Croatia, Norway, Switzerland and Turkey.

- **Hierarchical level**: Primary network, which corresponds to ERIM network, and Secondary network, represented by the rest of the network.

Three time thresholds: years 2020, 2030 and 2050.
Two different supply scenarios for capacity analysis

- **Base scenario:** current network

1. **Upgraded scenario:** it takes into account the planned development, where the main component is the TEN-T implementation program:
 - The development of the primary network at the expenses of secondary network.
 - The shift from single track lines to double or more tracks lines, which is seen both in the primary and secondary network.
Network length development in 2020 and 2030 in the upgraded scenario

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>2008</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total line length (km)</td>
<td>Single track lines (km)</td>
<td>Double track lines (km)</td>
</tr>
<tr>
<td>Europe</td>
<td>230,776</td>
<td>138,842</td>
<td>91,934</td>
</tr>
<tr>
<td>EU-15</td>
<td>150,569</td>
<td>79,253</td>
<td>71,316</td>
</tr>
<tr>
<td>EU-12</td>
<td>61,539</td>
<td>43,541</td>
<td>17,998</td>
</tr>
<tr>
<td>Primary</td>
<td>48,464</td>
<td>12,116</td>
<td>36,348</td>
</tr>
<tr>
<td>Secondary</td>
<td>182,312</td>
<td>126,726</td>
<td>55,586</td>
</tr>
</tbody>
</table>
Evolution of average capacity use in the base scenario

The theoretical capacity of the network (in train-km per year) is calculated by applying a standard daily capacity to each section of the rail network:

- 70 trains/day for single track lines
- 200 trains/day for double tracks lines

To calculate the capacity use, the theoretical capacity is compared with the traffic demand (= passenger train-km plus the number of freight train-km)

\[
\text{Current capacity utilization} = \frac{\text{average number of yearly train-km}}{\text{theoretical capacity of the corresponding line sections}}
\]
Evolution of average capacity use in the base scenario
Evolution of average capacity use in the upgraded scenario
Evolution of average capacity use on the six main corridors in the upgraded scenario
Conclusion on capacity analysis

Useable capacity in EU-27 upgraded scenario (year 2020)

<table>
<thead>
<tr>
<th></th>
<th>Capacity use</th>
<th>Max capacity use ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole network</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>Primary Network</td>
<td>57%</td>
<td>80%</td>
</tr>
<tr>
<td>Secondary Network</td>
<td>49%</td>
<td>65%</td>
</tr>
<tr>
<td>Corridors (total)</td>
<td>69%</td>
<td>90%</td>
</tr>
</tbody>
</table>

- The current network can accommodate part of the growth potentials, depending on the allocation of freight and passenger transport.

- Planned investments and the installation of ERTMS signalling systems on the corridors can significantly expand their capacity.
Estimates for growth potential rail freight

<table>
<thead>
<tr>
<th>Study</th>
<th>Measures studied</th>
<th>Scope</th>
<th>Rail growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasallo and Fagan (2005)</td>
<td>Full market opening, interoperability, international focus and productivity-enhancing infrastructure</td>
<td>EU</td>
<td>100%</td>
</tr>
<tr>
<td>EEA (2008)</td>
<td>a Theoretical potential
b Potential from a practical perspective (BGL)</td>
<td>EU</td>
<td>a 90%
b 7%</td>
</tr>
<tr>
<td>FERRMED (2008)</td>
<td>131-211 billion Euro investment in infrastructure & quality of supply</td>
<td>EU core (66% GDP)</td>
<td>8-15%</td>
</tr>
<tr>
<td>NEA (2004a)</td>
<td>TEN network construction</td>
<td>EU</td>
<td>12%</td>
</tr>
<tr>
<td>ZEW (2008)</td>
<td>a Road pricing based on MAUT
b 24% higher speed</td>
<td>Germany</td>
<td>a 14%
b 60%</td>
</tr>
<tr>
<td>PRC (2007)</td>
<td>Road pricing based on MAUT</td>
<td>Netherlands</td>
<td>3-4%</td>
</tr>
<tr>
<td>IMPACT (2008)</td>
<td>Full internalisation</td>
<td>EU</td>
<td>10%</td>
</tr>
<tr>
<td>Significance (2009)</td>
<td>Full internalisation</td>
<td>EU</td>
<td>10-32%</td>
</tr>
<tr>
<td>HOP! (2008)</td>
<td>Doubling / tripling of oil price</td>
<td>EU</td>
<td>6%</td>
</tr>
</tbody>
</table>

Source: Vassallo and Fagan, 2005
Overview of cases

Freight:
- Transport of fresh produce
- Modal shift in Switzerland
- Port-hinterland transport
- Improved interoperability
- MAUT in Germany and in Austria

Passenger:
- High-speed rail versus (low-cost) airlines
- Transport to and from train stations
- Rail business card
- Estimated potential of upscaled cases
A few results from the cases

- Main growth possible in freight markets with low share of rail, e.g. international containerised transport, chemicals and fresh produce
- Impacts of full internalisation of external cost (freight transport):
 - between 2% and 8% of the current road transport volume
 - corresponding to 10 to 32% growth of rail volume
 - Depends on assumptions and type of scenario
- Cases are hard to extrapolate to the entire market; more like a reality check
Key drivers & constraints in modal shift to rail

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Key driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Costs</td>
</tr>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td></td>
<td>Quality</td>
</tr>
<tr>
<td></td>
<td>Cargo</td>
</tr>
<tr>
<td>Supplier</td>
<td>Services and network</td>
</tr>
<tr>
<td></td>
<td>Infrastructure</td>
</tr>
<tr>
<td>Society</td>
<td>Accessibility/mobility</td>
</tr>
<tr>
<td></td>
<td>Environment</td>
</tr>
<tr>
<td></td>
<td>Cost</td>
</tr>
</tbody>
</table>
GHG reduction from shift road to rail in freight transport (EU-27 in 2020, without rebounds)
GHG reduction from shift to rail in passenger transport (EU-27 in 2020, without rebounds)

Road to rail (based on Öko-Institute study: EEA, 2008)

- Theoretical potential assuming:
 - Upgrading of all rail infrastructure to level of highly populated areas
 - Travel time and costs are reduced to levels of private car transport
 - More than a doubling of the modal share of rail: 70 Mton CO₂ reduction (9% of total passenger transport emissions)
 - With current + TEN-T network, potential is 2-7 Mtonne CO₂ reduction

Aviation to rail (long distance):

- Assuming HST network growth from 1,800 to 20,000 km
- Market share rail in 100-500 km range would increase from 5 to 15-20%
- GHG reduction of 14-18 Mton of CO₂
2050 perspective

• What-if scenario, based on vision by Siem Kallas as also reflected in the White Paper’s modal shift targets:
 • 60% market share in long distance road-rail freight market (38% of total road-rail market)
 • 50% market share in long distance passenger market (27% of total motorised passenger transport)
• GHG reduction 21%, without rebound effects and changes in load factors
• Rough estimate of required increase in infrastructure capacity: 65-82%
• Rough indication of infrastructure investment: 1,300 to 2,000 billion Euro
• Such a huge shift requires more than infrastructure: highly competitive door-to-door travel times, price levels and quality levels
• We did not investigate whether this is feasible with policy instruments
Rebound effects

- Policies that can stimulate modal shift have also other GHG effects
- Demand increase and unintended shifts (rail-rail, water-rail, bike-rail)
- The direction and magnitude of these effects differs per policy
- They can be very significant: 10% rebound effect = 20% less CO_2 reduction
Main conclusions

- Significant potential for a shift to rail transport (up to doubling)
- Data basis for shift in passenger market not well developed
- Primary network capacity allows growth in 2020 compared to baseline (assuming 50-50 allocation):
 - 39% for freight
 - 14% for passenger
- GHG reduction potential with current + TEN-T networks:
 - Freight: 5-20 Mt (2-7%)
 - Passenger 2-7 Mt (<1%)
- High modal shift perspective for 2050 (as in White Paper):
 - Max. 21% GHG reduction (without rebound effects and load factors)
 - 1,300 - 2,000 billion investments
 - Other policy and supply side factors, cost/benefits unclear
Subjects for further study

- Translation to government policies and supply-side measures
- Costs and benefits of the various scenarios and policies
- The climate impact of (rail) infrastructure construction
- Rebound effects and potential impacts on load factors
- Infrastructure financing and efficient allocation of funds